
Fonts optimization in PDF

Text is one of the fundamental tools for information interchange. In PDF
the text is represented by text elements in page content streams. A text
element specifies that characters should be drawn at certain positions. The
characters are specified using various encoding techniques and font
resource types. Fonts in PDF exist in two main categories. Simple fonts
and Composite fonts.

In Simple fonts, the glyphs (outlines) are selected by single-byte
character. These codes are indexed in a table of 256 glyphs. The mapping
from codes to glyphs is called the font’s encoding which is built in each font
program.

Composite fonts use CID’s (character identifier) as an intermediary step
during processing. They are typically used to handle writing systems
where there are a very large number of characters, such as in Japanese or
Chinese writing systems.

Except for Type 3 fonts and standard Type 1 fonts, every font dictionary
contains a subsidiary dictionary, the font descriptor, containing font-wide
metrics and other attributes of the font. Among those attributes is an
optional font file stream containing the font program.

This allows the font to be distributed with the document and avoids
potential problems that can occur if the required fonts are not available on
the system that is processing the PDF document. Because of this many of
the specialized PDF standards require all fonts to be embedded in the PDF
document.

This, however, comes with a potentially negative impact on document file
size. Embedding typical TrueType font in a document can in many cases
lead to inflating the file size by several orders of magnitude.

Copyright 2003-2019 ORPALIS · All rights reserved.

We can use several techniques to reduce the size of the font program
and keep the document content and quality unaffected.

One of the most effective and universal is font data stream
compression.

Font Data Stream Compression

Using this technique, we can effectively reduce the font file size without
losing any information. Table 1. shows an example size ratio of an
embedded font in PDF document.

Font Data Table Compression

Even after compression, the font program data can still constitute an
unacceptable amount of file size. In most use cases the OpenType type
tables are necessary during the creation of the text, and we can simply
drop them from the font program. To reduce the size further, we can check
the TrueType reference and PDF reference for minimum requirements of
sfnt data tables. Table 2. shows the resulting font data table list along with
updated size ratio to the PDF document file size.

Copyright 2003-2019 ORPALIS · All rights reserved.

Font used: Arial Regular Version 7.00 © 2017 The Monotype Corporation

State Size Compressed Size (Deflate)
PDF file size (one page
standard text)

Original - composite PDF font 1,036,584 Bytes 538,526 Bytes 562,266 Bytes

List of font data tables
OpenType - DSIG, GDEF, GPOS, GSUB, JSTF, LTSH, PCLT, VDMX
TrueType - cmap, cvt ,fpgm, gasp, glyf, hdmx, head, hhea, hmtx, kern, loca, maxp, meta, name, post,
prep

Table 1. Font file composition after embedding the complete font.

Font used: Arial Regular Version 7.00 © 2017 The Monotype Corporation

State Size Compressed Size (Deflate)
PDF file size (one page
standard text)

Leave only minimum required
tables for CID font 714,224 Bytes 420,000 Bytes 422,410 Bytes

OpenType - None
TrueType - glyf, head, hhea, hmtx, loca, maxp

Table 2. Font file composition after reducing font data tables to minimum.

Font Substitution

Now that we have hit the limit of removing unused data tables we need to
find another way to reduce the size. Font substitution is the next
important step. Considering we are only using a limited set of characters in
the PDF document we can rebuild the glyf and loca tables by removing
unused glyph definitions. In the example, the original font program
contains 4502 glyph definitions while the PDF document makes use of 28
of them. This means we can selectively remove 4474 glyph definitions
from the font program while still retain the same functionality in the PDF
document. Table 3. shows the resulting font program size after removing
the unused glyph definitions.

Removing Unused HMTX Table Entries

In the last step in font size reduction, we can take a look at the hmtx table
which contains horizontal metrics data for each glyph definition.

Since we have reduced the number of glyph definitions, it means the
horizontal metrics are also unused, and they constitute a recognizable
amount of the new font data size. Table 4. shows the size of the font
program after removing the unused hmtx table entries.

Copyright 2003-2019 ORPALIS · All rights reserved.

Font used: Arial Regular Version 7.00 © 2017 The Monotype Corporation

State Size Compressed Size (Deflate)
PDF file size (one page
standard text)

Remove Unused glyphs 28,584 Bytes 19,264 Bytes 21,671 Bytes

OpenType - None
TrueType - glyf, head, hhea, hmtx, loca, maxp

Table 3. Font file composition after removing the unused glyph definitions.

Font used: Arial Regular Version 7.00 © 2017 The Monotype Corporation

State Size Compressed Size (Deflate)
PDF file size (one page
standard text)

Reduce hmtx to used glyphs 12,005 Bytes 10,576 Bytes 14,411 Bytes

OpenType - None
TrueType - glyf, head, hhea, hmtx, loca, maxp

Table 4. Font file composition after removing unused hmtx entries.

At this point, we have reached almost 99% reduction rate of embedded
font program while retaining the complete information in PDF file.

This technique can be applied both during PDF document creation and
also for optimization of existing PDF documents. Many documents that are
the result of collaboration workflow will contain full fonts embedded to
enable easy modification and often these documents are not optimized
when reaching the final stage and archiving. In this case, we can run text
parsing processes to quantify the usage of fonts in documents and
subsequently run optimizations that will enable lower document file size.

3 Optimization Processes

The optimization processes can be separated into these basic categories:

Font file optimization Font de-duplication Font subset merging

Font file optimization is achieved by parsing and separating text by
fonts that are used for the visualization. In case the fonts are not subsetted
we can apply already described process of font program reduction. This
process is also useful in cases where fonts are already subsetted, but the
font program still contains unused glyph definitions or unnecessary font
data tables. The most common scenario is found in documents that are
results of splitting/page extraction processes that do not optimize the
output documents font programs.

Font de-duplication, on the other hand, is most common in document
merging processes. Many times the separate pages will use the same set
of fonts for text visualization and after merging them, the resulting
document will use duplicate font resources for each merged page. This
leads to incremental document file size with each added/merged page in
the final document. Font de-duplication optimization process can identify
these occurrences and replace the font program resources with
shared/referenced resource for all pages that use that particular font. After
successful de-duplication, font file optimization processes can be applied
by taking into account all texts from merged pages to further reduce the
final document file size.

Copyright 2003-2019 ORPALIS · All rights reserved.

Font subset merging is used in the same scenarios as font de-duplication
with the difference that font programs are already optimized for particular
pages. This process needs to identify subsets of the same parent font
program and merge them as one single font program resource. This
process can make use of available system fonts. If the parent font is
available, the subset merging process can use it as base font and apply
subset optimization based on the list of used characters/glyphs through
the font file optimization process. This new font program can then replace
the individual font subsets as single referenced/shared resource. In case
the parent font is not available, font subsets can be merged in certain
scenarios, depending on the font program subset integrity and encoding
systems used.

Copyright 2003-2019 ORPALIS · All rights reserved.

